Accepting Secure Payments With
Your Amazon© or PayPal® Account!
Check Out Our Sports Section
Click Here!

Synthetic / Fake Diamonds

      The following information may help you when shopping for genuine diamonds or cost effective alternatives until you have found the desired diamond of your choice. (Recently, some couples have turned to Moissanite as a temporary alternative)



      A synthetic diamond (also known as an artificial diamond, cultured diamond, or cultivated diamond) is diamond produced in an artificial process, as opposed to natural diamonds, which are created by geological processes. Synthetic diamond is also widely known as HPHT diamond or CVD diamond after the two common production methods (referring to the high-pressure high-temperature and chemical vapor deposition crystal formation methods, respectively). While the term synthetic is associated by consumers with imitation products, artificial diamonds are made of the same material (pure carbon, crystallized in isotropic 3D form).[1] In the U.S., the Federal Trade Commission has indicated that the alternative terms laboratory-grown, laboratory-created, and [manufacturer-name]-created “would more clearly communicate the nature of the stone”.

      Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD and HPHT processes. The first reproducible synthesis was reported around 1953. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.

      The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]

      Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The appearance of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds.




Citation
Page name: Synthetic diamond
Author: Wikipedia contributors
Publisher: Wikipedia, The Free Encyclopedia.
Date of last revision: 20 April 2017 06:15 UTC
Date retrieved: 16 May 2017 21:22 UTC
Permanent link: https://en.wikipedia.org/w/index.php?title=Synthetic_diamond&oldid=776309843
Primary contributors: Revision history statistics
Page Version ID: 776309843